Using the Refinement Equations for the Construction of Pre-wavelets Ii: Powers of Two

نویسندگان

  • Rong-Qing Jia
  • Charles A. Micchelli
چکیده

We study basic questions of wavelet decompositions associated with multiresolution analysis. A rather complete analysis of multiresolution associated with the solution of a refinement equation is presented. The notion of extensibility of a finite set of Laurent polynomials is shown to be central in the construction of wavelets by decomposition of spaces. Two examples of extensibility, first over the torus and then in complex space minus the coordinate axes are discussed. In each case we are led to a decomposition of the fine space in a multiresolution analysis as a sum of the adjacent coarse space plus an additional space spanned by the multiinteger translates of a finite number of pre-wavelets. Several examples are provided throughout to illustrate the general theory. §

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A wavelet method for stochastic Volterra integral equations and its application to general stock model

In this article,we present a wavelet method for solving stochastic Volterra integral equations based on Haar wavelets. First, we approximate all functions involved in the problem by Haar Wavelets then, by substituting the obtained approximations in the problem, using the It^{o} integral formula and collocation points then, the main problem changes into a system of linear or nonlinear equation w...

متن کامل

NUMERICAL SOLUTION OF LINEAR FREDHOLM AND VOLTERRA INTEGRAL EQUATION OF THE SECOND KIND BY USING LEGENDRE WAVELETS

In this paper, we use the continuous Legendre wavelets on the interval [0,1] constructed by Razzaghi M. and Yousefi S. [6] to solve the linear second kind integral equations. We use quadrature formula for the calculation of the products of any functions, which are required in the approximation for the integral equations. Then we reduced the integral equation to the solution of linear algebraic ...

متن کامل

Monitoring Nonlinear Profiles Using Wavelets

In many manufacturing processes, the quality of a product is characterized by a non-linear relationship between a dependent variable and one or more independent variables. Using nonlinear regression for monitoring nonlinear profiles have been proposed in the literature of profile monitoring which is faced with two problems 1) the distribution of regression coefficients in small samples is unkno...

متن کامل

Wilson wavelets for solving nonlinear stochastic integral equations

A new computational method based on Wilson wavelets is proposed for solving a class of nonlinear stochastic It^{o}-Volterra integral equations. To do this a new stochastic operational matrix of It^{o} integration for Wilson wavelets is obtained. Block pulse functions (BPFs) and collocation method are used to generate a process to forming this matrix. Using these basis functions and their operat...

متن کامل

Solving two-dimensional fractional integro-differential equations by Legendre wavelets‎

‎In this paper‎, ‎we introduce the two-dimensional Legendre wavelets (2D-LWs)‎, ‎and develop them for solving a class of two-dimensional integro-differential equations (2D-IDEs) of fractional order‎. ‎We also investigate convergence of the method‎. ‎Finally‎, ‎we give some illustrative examples to demonstrate the validity and efficiency of the method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1991